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We consider the stability of a tangential discontinuity in an inviscid, incompres- 
sible and non-heat-conducting, magnetizable fluid, with the dependence of the 

magnetic permeability on temperature and magnetic field taken into account. 
Solutions of the problem of stability of a tangential discontinuity in the conven- 
tional hydrodynamics and magnetohydrodynamics were given in [ 1 - 43, The 

stability of the interface separating two stationary ferromagnetic fluids was stu- 
died in [5j. The problem of stability of a tangential discontinuity in a ferromag- 
netic fluid was solved in fi]. In [5, S] it was assumed that the magnetic per- 
meability was independent of temperature and magnetic field. 

A system of ferrohydrodynamic equations can be written in the form [7, 81 

(1) 

rot H = 0, div FH = 0, lJ=pt(T, ff) 

where p is magnetic permeability, H is magnetic field, T is temperature, s is ent- 
ropy of unit mass of the medium and the remaining notation is standard. In 191 the inner 

moment of impulse was taken into account and the permeability P was assumed inde- 
pendent of the magnetic field, therefore the equations obtained there differ from (1). 
The coordinate system is chosen so that the plane z = 0 represents the unperturbed sur- 

face of tangential discontinuity which separates two fluid layers moving in the direction 
parallel to the plane of discontinuity. The magnetic field acts in an arbitrary direction. 
All quantities in the region z < 0 are denoted by a subscript 1, and those in the region 
z > 0 by the subscript 2. 

According to (1). the magnetic field potential is H = Vcp. The last equation in (1) 
can be written in the form 

div (PVrp) = 0 (2) 

In the coordinate system in which the discontinuity is at rest, the boundary conditions at 
the surface of tangential discontinuity are 

{‘@> = 0, {PnV’$J],>= 0, {Hik n$fk} = a / R, un = 0 (3) 
({a) = al - ag) 

Here n is the unit vector normal to the surface of discontinuity, i / R is the curvature 
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of the surface, a denotes the surface tension and l& is the impulse flux density tensor 
of the form 

pH.H, 6,, H 
‘i& = Pvivk + P’i& - * -kg IrHdH 

s 
0 

The energy flux and the tangential stresses are identically equal on both sides of thedis- 

continuity. This follows from the first three boundary conditions (3) and from the condi- 
tion of continuity of the tangential component of the electric field. 

We shall investigate the stability of the tangential discontinuity in the linear approxi- 
mation. Linearizing the system of equations (1) and (2) and the boundary conditions (3), 

we obtain 
P (&+vov) v’ = - v (p’ + mT’), div v’ = 0 (4) 

PLOW + a (HoVW + P,H,VT’ = 0, {Ho, C + cp’} = 0 

i 
- POHOVS + PO s + ~obH,,,HoVq’} = 0 

Vz’ 
4 X 

=dt=at+vov5 

1 Hoz= 
P’ + mT’ + 4n poHoVq - a r HoVq - 

CITa 
b=--- ,%w ’ 

0 

h-(a),.’ sT=(-$)H 

where 6 = 5 (x, y, 1) denoses a small displacement of the points of the discontinuity 

at the z-axis. 
The subscript 0 denotes the constant values of the quantities corresponding to the un- 

perturbed motion, and the prime denotes a small perturbationin the corresponding quan- 
tity. Henceforth we shall delete the subscript 0 accompanying the equilibrium values. 
The boundary values in the linear approximation from the pressure, velocity and magne- 
tic field potential, will be taken at z = 0. 

We seek the small perturbations in the form of a plane wave 

t - exp (ikr - ior), v’ - exp (ikr + ixz - iat) (5) 
P’ $_ mT’ - exp (ikr + ixz - iot) 

Cp’ - T’ - exp (ikr + ihz - iot) 

where k is a real vector parallel to the plane z = 0 and o denotes the complex fre- 

quency. The parameters h and x are also complex, and their imaginary parts represent 
the coefficients of decay of the corresponding quantities along the z-axis. 

Substituting the expressions for T’ and 9 from (5) into the third equation of (4). we 
obtain 
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If the frequency o has a positive imaginary part (1m o > o), then the perturbation 
amplitude will increase with time according to the law - exp (Imw) t, and this will 
make the flow unstable. The frequency o = vk corresponding to the perturbation mo- 
ving together with the fluid is real and of no interest from the point of view of the insta- 

bility, therefore we can write the formula (6) in the form 

T’= - $ (Hk + hHZ) v” 

Substituting the expressions (5. ) and (7) into the fourth equation of (4). we obtain a 
quadratic equation in h . Its solution is 

A=- 
bH,Hk 

1+bH,2*i 
I/k2 + b I(HkP + kw,2) 

1 f bHZ2 (8) 

Since the only physically meaningful solutions are those which vanish at infinity along 
the x-axis, we take the minus sign in the region z < 0 and the plus sign in the region 
z > 0 . Taking div of the first equation of (4) and remembering that div V' = 0, we 

obtain A (p’ + mT’) = 0 

from which it follows that x = fik. Following the choice of signs in the expression 

for A, we shall assume that x1 = --ik and x2 = -j-i/c. 
From the first and the seventh equation of (4) follows 

p’ + mT’ I - 3 (o - vk)a (9) 

Further, from the boundary conditions for cp’ in (4) we obtain the following expressions 
for z=o: , 

'PlW 

(W (~2 - PI) “7 A,(,) (Hz2 - HJ 
AZ-Al (10) 

A 
l(2) - h(2) 

[i 
1 + b,(,) G 

b) 
Al@) + b,(2) 25 Hk 

h(2) I * Bz = PHZ 

Substitution of (7), (9) and (10) into the last equation of (4) produces the dispersion rela - 
tion 

91 (W - vlkJa i- pz (o - v3k)a - a/$ + F = 0 (11) 

The condition of stability of the tangential discontinuity (roots of the quadraric equation 
(11) are real), has the form ak3 _ PIP% NW2 

PI+ PZ 
-F>,O W) 

where u = v1 - v, is the velocity difference between the two fluids. If p = con& 

the condition (12) becomes 

(13) 

If the fluid is in the gravity field g (we assume that g acts in the direction opposing 
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the z-axis), we can show that the term {pi - pz) gk must be added to the left- hand 
sides of the expressions (12) and (13), 

If the condition (12) is not fulfilled, Eq. (11) has two complex conjugate roots, one of 
which has a positive imaginary part, and this leads to instability. From the conditions 

(12) and (13) it follows that the tangential component of the magnetic field stabilizes 

the discontinuity. since the term (EW appears in these inequalities with a plus sign. 
The transverse component Hz destabilizes the discontinuity. 

Since a small perturbation on the surface of discontinuity can be represented as a 
superposition of plane waves, we must find the condition of stability which does not de- 

pend on the magnitude and direction of the vector k. In the general case, difficulties 
of mathematical nature are encountered in establishing this condition, but occasionally it 
can be obtained. 

Let us consider the case a = 0, P = co&, g = 0. The inequality (13) can be written 

From this quadratic form we obtain the following two conditions of stability : 

(FL1 - IL2)4 

16n’+lpa (PI+ vs.)” ( 

B4 

& - heBz2 ) + 

In the case when the tangential magnetic field component is absent, the condition of 
unconditional stabilitv assumes the form 

kWaua / (Pl+ Ps) + Ml8 < 4uI: (Pl - pz) (14) 

When the magnetic field is absent, the inequality (14) becomes the usual hydrodynamic 
condition of stability given in [ 11. 

If u = bl = 6, = 9, the condition (14) yields the following expression for the critical 
magnitude of the field : 

The quantity R kz agrees with that obtained in [5]. 
All the above results can be applied to dielectric fluids by replacing Ii by the elec- 

tric permeability e and the field H by the electric field E. 

The authors thank V. V. Gogosov for attention given and valuable discussions, 
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We consider the problem of constructing a model equation, i. e. the Burgers’ 
equation, for the wave processes in a thermoelastic medium in the presence of 

cylindrical and spherical symmetry, and give a solution to the boundary value 
problem for the initial system of equations. 

The Burgers’ equation [l - 41 serves as the model equation for a medium with 
dissipative properties. A solution of the Burgers’ equation describing the motion 
in the Cartesian coordinate system was studied in detail in [S]. The cases of cy- 
llndrical and spherical symmetry however present definite difficulties. 

1, Derivation of Burgers’ equation with variable coefficient,. 

We consider a process of deformation characterized by the relations 

z1 = x1 + u1 (Xl, t), 52 = X2 53= x3 

where Xk and xk (/c = 1, 2, 3) are the Lagrangian and Eulerian variables,respectively. 
The initial equations consist of the laws of conservation of impulse and energy for a con- 
tinuum. written in a differential form in the Eulerian variables [6, 71. We write these 
equations in the Lagrangian coordinates, taking into account the relations connecting the 
expressions for the physical quantities in the Lagrangian and Eulerian variables, respect- 


